一元二次函数顶点公式(一元二次函数顶点公式都有什么)

前面已经将二次函数的概念、定义、最简二次函数以及最简二次函数经过上下、左右平移而得到的新的函数关系式。中考生们应该熟练掌握二次函数基础知识,是冲刺中考的前提和保障。

网络图片

一,二次函数y=a(x+h)2+k的图像和性质

1.二次函数y=a(x+h)2+k的图像是一条抛物线,它的顶点是(-h,k) 对称轴是x=-h

当a>0时,图像开口向上,有最低点,即顶点是(-h,k) 当x=-h时,y有最小值为k;在对称轴的左侧,y随x的增大而减小,在对称轴的右侧,y随x的增大而增大。

当a<0时,图像开口向下,有最高点,即顶点是(-h,k) 当x=-h时,y有最大值为k;在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小。

2.抛物线y=a(x+h)2+k与y=ax2的关系

抛物线y=a(x+h)2+k可由抛物线y=ax2平移得到,它们的形状相同,位置不同。

把y=ax2的图像先沿着x轴向左(或向右)平移|h|个单位后,得到y=a(x±h)2的图像;再沿着y轴向上(或向下)平移|k|个单位,得到y=a(x±h)2+k的图像。

例如y=3(x-2)2+1的图像是由抛物线y=3x2向右平移2个单位,再向上平移1个单位得到的。

注意:y=ax2上、下平移后得到y=ax2±k的规律是“上加下减”

y=ax2左、右平移后得到y=a(x±h)2的规律是“左加右减”

3.由于从y=a(x+h)2+k(a≠0)中,可直接看出抛物线的顶点坐标,所以把y=a(x+h)2+k(a≠0)叫做二次函数 的顶点式;把y=ax2+bx+c(a≠0)叫做二次函数的一般式。

注意:顶点决定抛物线的位置,几个不同的二次函数,如果二次项系数a相同,那么抛物线开口方向,开口大小完全相同,只是顶点不同。

例如:y=3x2与y=3x2+1、y=3x2+2x等只是顶点位置不同。

抛物线的移动主要看顶点的移动,如:y=3x2与y=(x+1)2+3的位置关系,先求出顶点,y=3x2的顶点坐标是(0,0),y=(x+1)2+3的顶点坐标是(-1,3),平移时与上、下、左、右的先后顺序无关。

二,二次函数的一般式y=ax2+bx+c与二次函数的顶点式y=a(x+h)2+k的相互转化

1.顶点式y=a(x+h)2+k转化一般式y=ax2+bx+c

例如:y=(x-1)2+2 (顶点式)

=x2-2x+1+2

=x2-2x+3 (一般式)

解题技巧:将顶点式中的括号打开,再进行合并同类项。

2.一般式y=ax2+bx+c转化顶点式y=a(x+h)2+k

y=ax2+bx+c

=a[x2+(b/a)x+(c/a)]

=a[x2+2(b/2a)x+(b/2a)2-(b/2a)2+(c/a)]

=a[x+(b/2a)]2+(4ac-b2)/4a

令h=b/2a,k=(4ac-b2)/4a,则y=a(x+h)2+k

因此,抛物线y=ax2+bx+c的对称轴是x=-b/2a ,顶点坐标[-b/2a,(4ac-b2)/4a]

解题技巧:利用配方法在一般式加上一次项系数一半的平方,再减去一次项系数一半的平方,这样一加一减,与原来式子恒等。

三,求抛物线的顶点和对称轴的方法

1.公式法:y=ax2+bx+c

= a[x+(b/2a)]2+(4ac-b2)/4a

顶点坐标[-b/2a,(4ac-b2)/4a] 对称轴是x=-b/2a

2 .配方法:将抛物线的关系式化为 y=a(x+h)2+k ,得到顶点为(-h,k),对称轴是直线x=-h

四,二次函数y=ax2+bx+c图像的画法

1.描点法:把二次函数y=ax2+bx+c化为 y=a(x+h)2+k的形式;确定抛物线的开口方向、对称轴、顶点坐标;在对称轴两侧,以顶点为中心,左右对称描点画图。

注意:若抛物线与x轴有交点,最好选取交点描点,特别是在画抛物线草图时,应注意以下各项:

开口方向、顶点、对称轴、与x轴的交点、与y轴的交点。

2.平移法:利用配方法把二次函数y=ax2+bx+c化为 y=a(x+h)2+k的形式,确定其顶点(-h,k);画出y=ax2的图像;将抛物线y=ax2的图像平移,使其顶点平移到(-h,k)。

注意:平移图像的基本要点:上加下减、左加由减。

网络图片

四,用待定系数法确定二次函数的解析式的步骤

  1. 设,先设出二次函数的解析式,一般式y=ax2+bx+c、顶点式y=a(x+h)2+k、交点式y=a(x-x1)(x-x2)其中a≠0。

  2. 代,根据题中所给的条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程组。

  3. 解,解此方程(组)求待定系数。

  4. 还原,将求出的待定系数还原解析式中。

五,抛物线的解析式的确定方法:一般式y=ax2+bx+c、顶点式y=a(x+h)2+k、交点式y=a(x-x1)(x-x2)其中a≠0。

考生们一定要熟练掌握这几种方法,根据题意正确选择采用哪种形式合适。

六,用合适观点看一元二次方程

(一)抛物线与直线的交点

1.抛物线y=抛物线y=ax2+bx+c与y轴的交点与y轴的交点是(0,c)

2.抛物线y=ax2+bx+c与x轴的交点,因为x轴上的点的纵坐标都是0,所以令y=0代入得ax2+bx+c=0

若△≥0,则这个抛物线与x轴有交点。

若△<0,则这个抛物线与x轴没有交点。

3.一次函数y=kx+b1(k≠0)的图像与二次函数y=ax2+bx+c(a≠0)的图像的交点由方程组y=kx+b1与y=ax2+bx+c联立的解的个数决定。

当方程组有两个不同的解时→两个函数有两个交点。

当方程组有两个相同的解时→两个函数有一个交点。

当方程组无解时→两个函数没有交点。

逆向也成立。

(二)二次函数y=ax2+bx+c与一元二次方程ax2+bx+c=0的关系

抛物线y=ax2+bx+c与x轴交点的横坐标x1、x2是一元二次方程ax2+bx+c=0的两个根。

△=b2-4ac决定抛物线与x轴交点的个数。

△>0→抛物线与x轴有两个交点。

△=0→抛物线与x轴有一个交点。

△<0→抛物线与x轴没有交点。

七,二次三项式、一元二次方程、二次函数、一元二次不等式之间的关系

当二次三项式为0时,便是一元二次方程,此时x的值是一元二次方程的解,也是二次函数的图像与x轴交点的横坐标。

当二次三项式大于0(或小于)时,便是一元二次不等式,即考虑x值在哪个范围内变化时为正或为负,若二次函数y=ax2+bx+c的图像在x轴上方(或下方),则ax2+bx+c>0(或<0),此时ax2+bx+c>0(或<0)的解集为全体实数或无解。

八,实际问题与二次函数

的方法

  1. 配方法、2.公式法、3.判别式法。

网络图片

关于包含二次函数的知识点的题型很重要,基本都是以同其他知识相结合的压轴题的形式出现,请考生们在做历年中考真题时要多加以训练,做到熟练掌握。仔细琢磨题中的题设条件,善于利用题设条件挖掘隐含条件,通过训练中考真题,来提高追及的答题水平,为冲刺中考做好准备,机会总是留给有准备的人。


本文来自“玖玖言”用户投稿,该文观点仅代表作者本人,不代表华夏信息网立场,本站不对文章中的任何观点负责,内容版权归原作者所有、内容只用于提供信息阅读,无任何商业用途。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站(文章、内容、图片、音频、视频)有涉嫌抄袭侵权/违法违规的内容,请发送邮件至1470280261#qq.com举报,一经查实,本站将立刻删除、维护您的正当权益。如若转载,请注明出处:http://www.xxxwhg.com/cs/61781.html

上一篇 2023-03-13 02:43:14
下一篇 2023-03-12 05:55:22

相关推荐

  • 诛仙二萧鼎怎么不写(诛仙2萧鼎完结顶点)

    您好,今日小编就为大家解答这个问题。诛仙2萧鼎完结顶点,诛仙二萧鼎怎么不写相信很多小伙伴还不知道,现在让我们一起来看看吧!1、目前网上推论《诛仙2》不写下去的原因有很多,其中,我们可以看到从《诛仙》完结后,陆续出现的几部小说都是萧鼎围绕《诛仙》为中心,进行后续

    2023-02-17 01:03:14
    308
  • 二次函数的顶点坐标怎么求(二次函数的顶点坐标公式解析)

    您好,今日小编就为大家解答这个问题。二次函数的顶点坐标公式解析,二次函数的顶点坐标怎么求相信很多小伙伴还不知道,现在让我们一起来看看吧!1、二次函数 顶点 纵坐标:(4ac-b)/(4a) 由一般式得到顶点式的过程是: y=ax+bx+c =a[x+(b/a)x+(c/a)] =a[x+(b/a)x+(b/2a)-(b/2a)+

    2023-01-23 21:48:10
    135
  • 废婿崛起韩三千完整版(废婿崛起韩三千顶点小说)

    您好,今日小编就为大家解答这个问题。废婿崛起韩三千顶点小说,废婿崛起韩三千完整版相信很多小伙伴还不知道,现在让我们一起来看看吧!1、詹遇辰 跟徐颜夕出自三千弱水的【钟情】里的配角 在钟情里两人并没有在一起。2、有读者问是否会写两人的文 作者的回答是只开一本。3、因

    2022-11-12 13:21:14
    321
  • 二次函数顶点坐标用abc表示(二次函数怎么求顶点坐标)

    下面是2020年重庆中考压轴题,关于第三问,网页上没给出详细具体参考答案,最热情的也只是画出了四个点的位置。有的网页上给出的答案还是错误的。只要平时努力,中考必胜。本文,我详细分析,主要针对第三问,原创讲解如何打开思路、如何找出四个点、为什么这样找,保证同学们

    2022-12-02 21:56:40
    181